### Lecture 1: Machine Learning Problem

Qinfeng (Javen) Shi

### 28 July 2014

Intro. to Stats. Machine Learning COMP SCI 4401/7401

### Table of Contents I

### 1 Course info

### 2 Machine Learning

- What's Machine Learning?
- Types of Learning
- Overfitting
- Occam's Razor

### 3 Real life problems

- Typical assumptions
- Large-scale data
- Structured data
- Changing environment

### Enrolment

Enrol yourself in Forum for messages, assignments and slides Link: https://forums.cs.adelaide.edu.au/login/index.php Go to Course "ISML-S2-2014"

### Assessment

The course includes the following assessment components:

- Final written exam at 55% (open book).
- Three assignments at 15% each (report and code).

## **Required Skills**

- Ability to program in Matlab, C/C++ is required.
- Knowing some basic statistics, probability, linear algebra and optimisation would be helpful, but not essential. They will be covered when needed.

### Recommended books

- Pattern Recognition and Machine Learning by Bishop, Christopher M.
- Kernel Methods for Pattern Analysis by John Shawe-Taylor, Nello Cristianini
- Convex Optimization by Stephen Boyd and Lieven Vandenberghe

Book 1 is for machine learning in general. Book 2 focuses on kernel methods with pseudo code and some theoretical analysis. Book 3 gives introduction to (Convex) Optimization.

### External courses

- Learning from the Data by Yaser Abu-Mostafa in Caltech.
- Machine Learning by Andrew Ng in Stanford.
- Machine Learning (or related courses) by Nando de Freitas in UBC (now Oxford).

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Machine Learning

Using data to uncover an underlying process.

What's Machine Learning? Types of Learning Overfitting Occam's Razor

- Input:  $\mathbf{x} \in \mathcal{X}$  (feature)
- Output:  $y \in \mathcal{Y}$  (label)

What's Machine Learning? Types of Learning Overfitting Occam's Razor

- Input:  $\mathbf{x} \in \mathcal{X}$  (feature)
- Output:  $y \in \mathcal{Y}$  (label)
- Underlying process (unknown)  $f: \mathfrak{X} \rightarrow \mathfrak{Y}$

What's Machine Learning? Types of Learning Overfitting Occam's Razor

- Input:  $\mathbf{x} \in \mathcal{X}$  (feature)
- Output:  $y \in \mathcal{Y}$  (label)
- Underlying process (unknown)  $f: \mathfrak{X} \rightarrow \mathfrak{Y}$
- Data:  $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$

What's Machine Learning? Types of Learning Overfitting Occam's Razor

- Input:  $\mathbf{x} \in \mathcal{X}$  (feature)
- Output:  $y \in \mathcal{Y}$  (label)
- Underlying process (unknown)  $f: \mathfrak{X} \rightarrow \mathfrak{Y}$
- Data:  $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$  $\Downarrow$  Learn
- Decision function  $g : \mathcal{X} \to \mathcal{Y}$ , such that  $g \approx f$ .

What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Formulation

- Input:  $\mathbf{x} \in \mathcal{X}$  (feature)
- Output:  $y \in \mathcal{Y}$  (label)
- Underlying process (unknown)  $f: \mathfrak{X} \rightarrow \mathfrak{Y}$
- Data:  $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$  $\Downarrow$  Learn
- Decision function  $g : \mathfrak{X} \to \mathfrak{Y}$ , such that  $g \approx f$ .

For a new  $\mathbf{x}'$ , predict  $y' = g(\mathbf{x}')$ .

Х

What's Machine Learning? Types of Learning Overfitting Occam's Razor

y

# Examples

Qinfeng (Javen) Shi Lecture 1: Machine Learning Problem

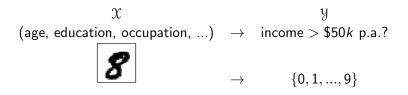
What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Examples

 $\begin{array}{ccc} \chi & & \mathcal{Y} \\ \text{(age, education, occupation, ...)} & \rightarrow & \text{income} > \$50k \text{ p.a.?} \end{array}$ 

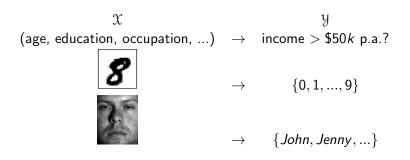
What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Examples



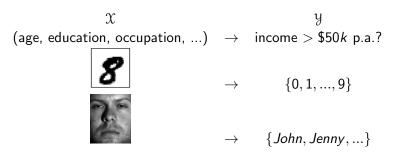
What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Examples



What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Examples



To learn decision function  $g : \mathcal{X} \to \mathcal{Y}$ . What's g like?

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### **Decision** functions

#### Inner product

For vectors 
$$\mathbf{x} = [x^1, x^2, \cdots, x^d]^\top$$
,  $\mathbf{w} = [w^1, w^2, \cdots, w^d]^\top$ , the inner product

$$\langle \mathbf{x}, \mathbf{w} 
angle = \sum_{i=1}^{d} x^{i} w^{i}.$$

We write  $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$  to say they are *d*-dimensional real number vectors. We consider all vectors as column vectors by default.

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### **Decision** functions

#### Inner product

For vectors  $\mathbf{x} = [x^1, x^2, \cdots, x^d]^\top$ ,  $\mathbf{w} = [w^1, w^2, \cdots, w^d]^\top$ , the inner product

$$\langle \mathbf{x}, \mathbf{w} 
angle = \sum_{i=1}^d x^i w^i.$$

We write  $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$  to say they are *d*-dimensional real number vectors. We consider all vectors as column vectors by default.

#### Sign function

For any scalar  $a \in \mathbb{R}$ ,

$$\mathsf{sign}(a) = \left\{egin{array}{cc} 1 & ext{if } a > 0 \ -1 & ext{otherwise} \end{array}
ight.$$

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### **Decision** functions

Typical decision functions for classification <sup>1</sup> :

Binary-class 
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

Multi-class 
$$g(\mathbf{x}; \mathbf{w}) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} (\langle \mathbf{x}, \mathbf{w}_y \rangle).$$

where  $\mathbf{w}, \mathbf{w}_{y}$  are the parameters, and  $\mathbf{x}, \mathbf{w}, \mathbf{w}_{y} \in \mathbb{R}^{d}$ .

<sup>1</sup>for  $b \in \mathbb{R}$ , more general form  $\langle \mathbf{x}, \mathbf{w} \rangle + b$  can be rewritten as  $\langle [\mathbf{x}; 1], [\mathbf{w}; b] \rangle$ Qinfeng (Javen) Shi Lecture 1: Machine Learning Problem

What's Machine Learning? Types of Learning Overfitting Occam's Razor

## **Decision** functions

Typical decision functions for classification  $^{1}: \\$ 

Binary-class 
$$g(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\langle \mathbf{x}, \mathbf{w} \rangle).$$

$$\begin{array}{ll} \mathsf{Multi-class} & g(\mathbf{x};\mathbf{w}) = \operatorname*{argmax}_{y \in \mathcal{Y}}(\langle \mathbf{x},\mathbf{w}_y \rangle). \end{array}$$

where  $\mathbf{w}, \mathbf{w}_y$  are the parameters, and  $\mathbf{x}, \mathbf{w}, \mathbf{w}_y \in \mathbb{R}^d$ .

Parameterisation

To learn g is to learn w or  $w_y$ .

<sup>1</sup>for  $b \in \mathbb{R}$ , more general form  $\langle x, w \rangle + b$  can be rewritten as  $\langle [x; 1], [w; b] \rangle$ 

What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Types of Learning

- Supervised Learning
- Onsupervised Learning
- Semi-supervised Learning

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Supervised Learning

#### Definition

Given input-output data pairs  $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$  sampled from an unknown but fixed distribution  $p(\mathbf{x}, y)$ , the goal is to learn  $g : \mathcal{X} \to \mathcal{Y}, g \in \mathcal{G}$  s.t.  $p(g(\mathbf{x}) \neq y)$  is small.

 $p(g(\mathbf{x}) \neq y)$  (*i.e.* expected testing error) is generalisation error.

What's Machine Learning? Types of Learning Overfitting Occam's Razor

## Supervised Learning

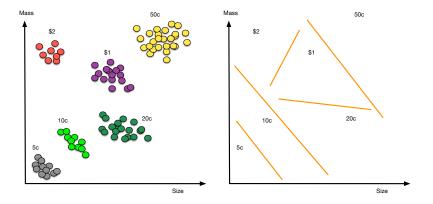
### Coin recognition (vending machines and parking meters).



What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Supervised Learning

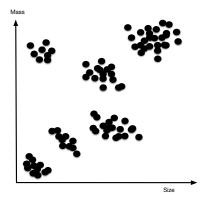
### We have (input, correct output) in the training data.



What's Machine Learning? Types of Learning Overfitting Occam's Razor

## Unsupervised Learning

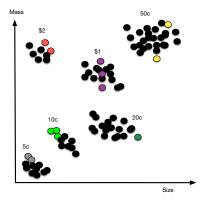
Instead of (input, correct output), we have (input, ?).



What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Semi-supervised Learning

We have some (input, correct output), and some (input, ?).



What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Overfitting

Fitting the training data too well cause a problem.





What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Overfitting

Train on training data (testing data are hidden from us).

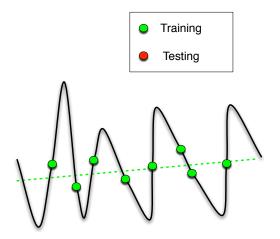




What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Overfitting

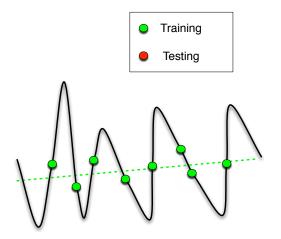
Two possible models. Which model fits the training data better?



What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Overfitting

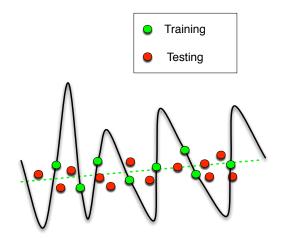
Two possible models. Which model fits the testing data better?



What's Machine Learning? Types of Learning Overfitting Occam's Razor

# Overfitting

### Reveal the testing data.



What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Occam's Razor

"The simplest model that fits the data is also the most plausible."

What's Machine Learning? Types of Learning Overfitting Occam's Razor

## Occam's Razor

"The simplest model that fits the data is also the most plausible."

Two questions:

• What does it mean for a model to be simple?

What's Machine Learning? Types of Learning Overfitting Occam's Razor

## Occam's Razor

"The simplest model that fits the data is also the most plausible."

Two questions:

- What does it mean for a model to be simple?
- 2 Why simpler is better?

What's Machine Learning? Types of Learning Overfitting Occam's Razor

## Simpler means less complex

Model complexity – two types:

- **(**) complexity of the function g: order of a polynomial, MDL
  - a straight line (order 0 or 1) is simpler than a quadratic function (order 2).
  - computer program: 100 bits simpler than 1000 bits
- 2 complexity of the space  $\mathcal{G}$ :  $|\mathcal{G}|$ , VC dimension, noise-fitting, ...
  - Often used in proofs.

What's Machine Learning? Types of Learning Overfitting Occam's Razor

### Simpler is better

- What do you mean by "better"?
  - smaller generalisation error (*e.g.* smaller expected testing error).
- Why simpler is better?
  - Practically implemented by regularisation techniques, which will be covered in Lecture 2.
  - Theoretically answered by generalisation bounds, which will be covered in Learning Theory in Lecture 12.

Typical assumptions Large-scale data Structured data Changing environment

## Typical assumptions

- Small-scale data
  - Model fits in the memory
  - Data fit in the memory or at least the disk
  - Computer is fast enough
- {
   (x<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub> are independent and identically distributed (i.i.d.)
   samples from p(x, y)
- **3** Underlying process  $(f(\mathbf{x}) \text{ or } p(\mathbf{x}, y))$  unknown but fixed

Typical assumptions Large-scale data Structured data Changing environment

In real life things are more complex

#### Small-scale data

• Large-scale  $\rightarrow$  Random Projection

Typical assumptions Large-scale data Structured data Changing environment

In real life things are more complex

#### Small-scale data

- Large-scale  $\rightarrow$  Random Projection
- {
   (x<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub> are independent and identically distributed (i.i.d.) samples from p(x, y)
  - $\bullet\$  Correlated  $\rightarrow$  Structured Learning and Graphical Models

Typical assumptions Large-scale data Structured data Changing environment

#### In real life things are more complex

#### Small-scale data

- Large-scale  $\rightarrow$  Random Projection
- {
   (x<sub>i</sub>, y<sub>i</sub>)}<sup>N</sup><sub>i=1</sub> are independent and identically distributed (i.i.d.) samples from p(x, y)
  - $\bullet~\mbox{Correlated}~\rightarrow~\mbox{Structured}$  Learning and Graphical Models
- O Underlying process unknown but fixed
  - Changing environment  $\rightarrow$  Online Learning (with Structured Data)

Typical assumptions Large-scale data Structured data Changing environment

### Large-scale data

Assumption 1: Small-scale data.

- Web topic classification: 4.4 million data, input vector 1.8 million dimensions, and output 7k classes?
- $\operatorname{argmax}_{y \in \mathcal{Y}}(\langle \mathbf{x}, \mathbf{w}_y \rangle)$ ? No! "store all  $\mathbf{w}_y$ "  $\approx 100G$  memory.

Typical assumptions Large-scale data Structured data Changing environment

### Large-scale data

Assumption 1: Small-scale data.

- Web topic classification: 4.4 million data, input vector 1.8 million dimensions, and output 7k classes?
- $\operatorname{argmax}_{y \in \mathcal{Y}}(\langle \mathbf{x}, \mathbf{w}_y \rangle)$ ? No! "store all  $\mathbf{w}_y$ "  $\approx 100G$  memory.
- Our methods:
  - Loading data, training and testing on 804, 414 news articles to predict the topics in 25.16s!
  - Training 4.4 million data in 0.5 hours (normally 2000 days).

Typical assumptions Large-scale data Structured data Changing environment

#### Structured data

Assumption 2:  $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$  are independent.

Typical assumptions Large-scale data Structured data Changing environment

### Structured data

# Assumption 2: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ are independent.



Figure : Tennis action recognition

Most likely actions =  $\operatorname{argmax}_{y_1, y_2, y_3, y_4} P(y_1, y_2, y_3, y_4 | Image)$ .

Typical assumptions Large-scale data Structured data Changing environment

### Structured data

# Assumption 2: $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$ are independent.

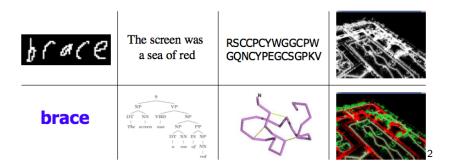


Figure : Tennis action recognition

Most likely actions =  $\operatorname{argmax}_{y_1, y_2, y_3, y_4} P(y_1, y_2, y_3, y_4 | Image)$ .  $\mathbf{y} = (y_1, y_2, y_3, y_4)$  is a structure of an array.

Typical assumptions Large-scale data Structured data Changing environment

## Structured data



Structured output: a sequence, a tree, or a network, ...

<sup>2</sup>courtesy of B. Taskar

Typical assumptions Large-scale data Structured data Changing environment

## **Online Learning**

Assumption 3 fails: Underlying process changes. + Assumption 1 fails too. *i.e.* We have Large-scale data.

Typical assumptions Large-scale data Structured data Changing environment

## **Online Learning**

Assumption 3 fails: Underlying process changes. + Assumption 1 fails too. *i.e.* We have Large-scale data. ↓ Online Learning (OL): predicting answers for a sequence of questions.

- processing one datum at a time (theoretical guarantee)
- no assumption on underlying process being fixed

Typical assumptions Large-scale data Structured data Changing environment

# **Online Learning**

Assumption 3 fails: Underlying process changes. + Assumption 1 fails too. *i.e.* We have Large-scale data. ↓ Online Learning (OL): predicting answers for a sequence of

questions.

- processing one datum at a time (theoretical guarantee)
- no assumption on underlying process being fixed Problem 1: it does not scale for structured data.



Typical assumptions Large-scale data Structured data Changing environment

## That's all

#### Thanks!

Qinfeng (Javen) Shi Lecture 1: Machine Learning Problem